Diffraction

Roxana Flacau
Canadian Neutron Beam Centre

12th International Neutron Scattering Summer School
Chalk River, Ontario, Canada

June 3, 2013
- Crystal structures (crystal, unit cells, lattice planes, crystallographic notations, Miller indices, d-spacing, reciprocal lattice, Ewald sphere)
 - Bragg’s law

- Structure factors, Debye Waller factor, neutrons vs X-rays

- Data analysis – focus on powder diffraction
Applications of Powder Diffraction

chemistry

physics

engineering

life sciences

biochemistry

materials science

geological sciences

archeology
A material **crystalline** if the atoms or ions that compose it are arranged in a regular way (i.e., a crystal has internal order due to the periodic arrangement of atoms in three dimensions*).

Note: this definition is valid for most crystalline materials, but quasicrystals, 1D or 2D–ordered, incommensurate structures are also known.
Content (basis)

- Na atom
- NaCl molecule
- C_{60} molecule
- nucleosome macromolecule

Crystal

- Unit Cell - Basis
Crystal structure is described by a building block called the **unit cell** and atomic coordinates inside the cell.

Three dimensional stacking of the unit cell forms the crystal.

Unit cell

a box with 3 sides (a, b and c) and 3 angles (α, β and γ)

Location of atoms inside the unit cell are given by atomic coordinates: \((x_i, y_i, z_i)\), fractions of a, b and c lattice constants.
• There are many possibilities to choose a unit cell

• The choice of the conventional unit cell is a matter of convenience; *it should be the smallest and simplest, but have the highest possible symmetry*
Wyckoff Positions of Group 225 (Fm-3m)

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>l</td>
<td>1</td>
<td>(x,0,0) - (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x,y,z) + (x,-y,z) + (-x,y,-z) + (-x,-y,-z)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x,z,y) + (-x,z,-y) + (-x,-z,y) + (x,-z,-y)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x,-y,z) + (x,y,-z) + (-x,-y,-z) + (x,y,z)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(y,z,x) + (y,-z,x) + (-y,z,-x) + (-y,-z,-x)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(y,-z,x) + (y,z,-x) + (-y,-z,-x) + (y,z,x)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(z,x,y) + (-z,x,-y) + (-z,-x,y) + (z,-x,-y)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(z,-x,y) + (z,x,-y) + (-z,-x,-y) + (z,x,y)</td>
</tr>
<tr>
<td>96</td>
<td>k</td>
<td>m</td>
<td>(x,x,x) + (x,-x,x) + (x,x,-x) + (x,-x,-x)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x,x,x) + (x,-x,x) + (x,x,-x) + (x,-x,-x)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x,x,x) + (x,-x,x) + (x,x,-x) + (x,-x,-x)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x,x,x) + (x,-x,x) + (x,x,-x) + (x,-x,-x)</td>
</tr>
<tr>
<td>96</td>
<td>j</td>
<td>m</td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td>48</td>
<td>i</td>
<td>mm2</td>
<td>(1/2,1/2,1/2) + (1/2,-1/2,-1/2) + (-1/2,1/2,-1/2) + (-1/2,-1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1/2,1/2,1/2) + (1/2,-1/2,-1/2) + (-1/2,1/2,-1/2) + (-1/2,-1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1/2,1/2,1/2) + (1/2,-1/2,-1/2) + (-1/2,1/2,-1/2) + (-1/2,-1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1/2,1/2,1/2) + (1/2,-1/2,-1/2) + (-1/2,1/2,-1/2) + (-1/2,-1/2,1/2)</td>
</tr>
<tr>
<td>48</td>
<td>h</td>
<td>mm2</td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td>48</td>
<td>g</td>
<td>2mm</td>
<td>(1/4,1/4,1/4) + (3/4,1/4,1/4) + (1/4,3/4,1/4) + (3/4,3/4,1/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1/4,1/4,1/4) + (3/4,1/4,1/4) + (1/4,3/4,1/4) + (3/4,3/4,1/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1/4,1/4,1/4) + (3/4,1/4,1/4) + (1/4,3/4,1/4) + (3/4,3/4,1/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1/4,1/4,1/4) + (3/4,1/4,1/4) + (1/4,3/4,1/4) + (3/4,3/4,1/4)</td>
</tr>
<tr>
<td>32</td>
<td>f</td>
<td>3mm</td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td>24</td>
<td>e</td>
<td>4mm</td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,0) + (0,1,0) + (1,0,0) + (1,1,0)</td>
</tr>
<tr>
<td>24</td>
<td>d</td>
<td>mm3</td>
<td>(0,1/4,1/4) + (1/4,1/4,1/4) + (1/4,1/4,1/4) + (1/4,1/4,1/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,1/4,1/4) + (1/4,1/4,1/4) + (1/4,1/4,1/4) + (1/4,1/4,1/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,1/4,1/4) + (1/4,1/4,1/4) + (1/4,1/4,1/4) + (1/4,1/4,1/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,1/4,1/4) + (1/4,1/4,1/4) + (1/4,1/4,1/4) + (1/4,1/4,1/4)</td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>-43m</td>
<td>(1/4,1/4,1/4) + (1/4,1/4,1/4) + (1/4,1/4,1/4) + (1/4,1/4,1/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1/4,1/4,1/4) + (1/4,1/4,1/4) + (1/4,1/4,1/4) + (1/4,1/4,1/4)</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>m-3m</td>
<td>(1/2,1/2,1/2)</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>m-3m</td>
<td>(0,0,0)</td>
</tr>
</tbody>
</table>

Some basic crystallography concepts

...so we can read this!

or Bilbao Crystallographic server
http://www.cryst.ehu.es/
The 7 Crystal Systems

Shape of the unit cell

<table>
<thead>
<tr>
<th>System</th>
<th>u.c. symmetry</th>
<th>unit cell parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubic</td>
<td>m-3m</td>
<td>(a = b = c) (\alpha = \beta = \gamma = 90^\circ)</td>
</tr>
<tr>
<td>hexagonal</td>
<td>6/mmmm</td>
<td>(a = b \neq c) (\alpha = \beta = 90^\circ \gamma = 120^\circ)</td>
</tr>
<tr>
<td>trigonal*</td>
<td>3/mmm</td>
<td>(a = b \neq c) (\alpha = \beta = 90^\circ \gamma = 120^\circ)</td>
</tr>
<tr>
<td>tetragonal</td>
<td>4/mmm</td>
<td>(a = b \neq c) (\alpha = \beta = \gamma = 90^\circ)</td>
</tr>
<tr>
<td>orthorhombic</td>
<td>mmm</td>
<td>(a \neq b \neq c) (\alpha = \beta = \gamma = 90^\circ)</td>
</tr>
<tr>
<td>monoclinic</td>
<td>2/m</td>
<td>(a \neq b \neq c) (\alpha = \gamma = 90^\circ \beta \neq 90^\circ)</td>
</tr>
<tr>
<td>triclinic</td>
<td>-1</td>
<td>(a \neq b \neq c) (\alpha \neq \beta \neq \gamma \neq 90^\circ)</td>
</tr>
</tbody>
</table>

* also described as rhombohedral: \(a = b = c \) \(\alpha = \beta = \gamma \neq 90^\circ \)
Symmetry Elements in 2D

- **Notation:** $a, b, c, n, \text{ or } d$
 - Rotation by $360^\circ/3$
 - Notation: 3

- **Notation:** m
 - Mirror plane
 - Rotation by $360^\circ/2$
 - Notation: 2

- **Glide plane**
 - Rotation by $360^\circ/2$
 - Notation: 2

- **2-fold rotation axis**
 - Rotation by $360^\circ/6$
 - Notation: 6

- **3-fold rotation axis**
 - Rotation by $360^\circ/4$
 - Notation: 4
Symmetry elements in 3D

2D symmetry elements

Screw axis = combination of rotation and translation

Notation: \(N_k \) describes a N-fold rotation followed by translation parallel to the axe of rotation by \(k/N \) of the unit cell.

Ex: \(2_1 \) is a 180° (twofold) rotation followed by a translation of 1/2 of the lattice vector
Bravais Lattices

CUBIC
\[a = b = c \]
\[\alpha = \beta = \gamma = 90^\circ \]

TETRAGONAL
\[a = b \neq c \]
\[\alpha = \beta = \gamma = 90^\circ \]

ORTHORHOMBIC
\[a \neq b \neq c \]
\[\alpha = \beta = \gamma = 90^\circ \]

HEXAGONAL
\[a = b \neq c \]
\[\alpha = \beta = 90^\circ \]
\[\gamma = 120^\circ \]

MONOCLINIC
\[a \neq b \neq c \]
\[\alpha = \gamma = 90^\circ \]
\[\beta \neq 120^\circ \]

TRICLINIC
\[a \neq b \neq c \]
\[\alpha \neq \beta \neq \gamma \neq 90^\circ \]

4 Types of Unit Cell

- **P** = Primitive
- **I** = Body-Centred
- **F** = Face-Centred
- **C** = Side-Centred

7 Crystal Classes

→ **14 Bravais Lattices**
It is often necessary to be able to specify certain directions and planes in the crystal:
- determine the necessary orientation so that the diffraction occurs
- many material may have anisotropic properties

Direction and planes are described using a set of three integers – Miller indices (hkl)
Miller indices \((h \ k \ l)\) = three lattice points used to identify orientation of a set of parallel planes of atoms within a crystal structure.

\((h \ k \ l)\) plane intercepts crystallographic axes \(a\), \(b\) and \(c\) at

\[
\frac{a}{h}, \frac{b}{k}, \frac{c}{l}
\]

where \(h\), \(k\), and \(l\) are relatively prime integers

\[
\frac{1}{h}, \frac{1}{k}, \frac{1}{l}
\]

fractional intercepts

Miller indices

\(h, k, l\)

We will come back to this

what an index=0 means?

reciprocals of fractional intercepts
Cu

Space group: \textit{Fm-3m} (#225)

Lattice parameter: cubic, $a = 3.6147$ Å

Atoms: Cu in $4a (0, 0, 0)$

Wyckoff positions

4 atoms in the unit cell: one at the corners and 3 on the faces

\[Fm\bar{3}m \]

• Face-centered cubic
• Mirror planes perpendicular to the x, y and z axes
• 3 folding along the [111] direction
• Mirror plane perpendicular to (110) plane
Bragg’s law in direct space (sample space)

Diffraction: neutrons interact with nuclei → scattered in all directions by every nucleus they encounter. Scattered waves from different nuclei travel different distances → acquire different phase → interfere as they add up!

Constructive interference of waves scattered from two lattice points A and D in adjacent planes:

\[AB + AC = n\lambda \]

\[2d \sin \theta = n\lambda \]

Bragg’s Law
Reciprocal Lattice – Inverse and Orthogonal

3 vectors, \(\{a^*, b^*, c^*\} \), the normals to the Miller planes (100), (010), and (001), form the basis of the reciprocal lattice.

Mathematical definitions:

\[
\begin{align*}
 a^* &= 2\pi \frac{b \times c}{V}, \\
 b^* &= 2\pi \frac{c \times a}{V}, \\
 c^* &= 2\pi \frac{a \times b}{V} \\
 a &= 2\pi \frac{b^* \times c^*}{V^*}, \\
 b &= 2\pi \frac{c^* \times a^*}{V^*}, \\
 c &= 2\pi \frac{a^* \times b^*}{V^*}
\end{align*}
\]

Reciprocal space vectors define normals to planes in the direct space, meaning that a set of an infinite number of crystallographic planes in direct space is represented by a vector, or a single point at the end of the vector.
Relationship between direct and reciprocal dimensions

<table>
<thead>
<tr>
<th>Crystal System</th>
<th>Direct Dimension</th>
<th>Reciprocal Dimension</th>
<th>General Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthorhombic ($a \neq b \neq c$)</td>
<td>$a^* = \frac{1}{a}$</td>
<td>$\alpha^* = \alpha = 90^\circ$</td>
<td>$\frac{1}{\alpha \sin \beta \sin \gamma^*}$</td>
</tr>
<tr>
<td>Tetragonal ($a = b \neq c$)</td>
<td>$b^* = \frac{1}{b}$</td>
<td>$\beta^* = \beta = 90^\circ$</td>
<td>$\frac{1}{b \sin \gamma \sin \alpha^*}$</td>
</tr>
<tr>
<td>Cubic ($a = b = c$)</td>
<td>$c^* = \frac{1}{c}$</td>
<td>$\gamma^* = \gamma = 90^\circ$</td>
<td>$\frac{1}{c \sin \alpha \sin \beta^*}$</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>$a = b \neq c$</td>
<td>$\alpha^* = \alpha = 90^\circ$</td>
<td>$\frac{1}{a \sin \beta \sin \gamma}$</td>
</tr>
<tr>
<td></td>
<td>$\gamma = 120^\circ$</td>
<td>$\beta^* = \beta = 90^\circ$</td>
<td>$\frac{1}{b \sin \gamma \sin \alpha}$</td>
</tr>
<tr>
<td>Trigonal</td>
<td>$b^* = \frac{1}{b \sin \gamma}$</td>
<td>$\gamma^* = (180^\circ - \gamma) = 60^\circ$</td>
<td>$\frac{1}{c \sin \alpha \sin \beta}$</td>
</tr>
<tr>
<td></td>
<td>$c^* = \frac{1}{c}$</td>
<td>$\gamma^* = (180^\circ - \gamma) = 60^\circ$</td>
<td>$\frac{1}{c \sin \alpha \sin \beta}$</td>
</tr>
<tr>
<td>Triclinic</td>
<td>$a^* = \frac{1}{a \sin \beta \sin \gamma^*}$</td>
<td>$\beta^* = \beta = 90^\circ$</td>
<td>$\frac{1}{b \sin \gamma \sin \alpha^*}$</td>
</tr>
<tr>
<td></td>
<td>$b^* = \frac{1}{b \sin \gamma \sin \alpha^*}$</td>
<td>$\gamma^* = \gamma = 90^\circ$</td>
<td>$\frac{1}{c \sin \alpha \sin \beta^*}$</td>
</tr>
<tr>
<td></td>
<td>$c^* = \frac{1}{c \sin \alpha \sin \beta^*}$</td>
<td>$\gamma^* = (180^\circ - \gamma) = 60^\circ$</td>
<td>$\frac{1}{c \sin \alpha \sin \beta}$</td>
</tr>
<tr>
<td>Monoclinic</td>
<td>$a^* = \frac{1}{a \sin \beta}$</td>
<td>$\alpha^* = \alpha = 90^\circ$</td>
<td>$\frac{1}{b \sin \gamma \sin \alpha^*}$</td>
</tr>
<tr>
<td></td>
<td>$b^* = \frac{1}{b}$</td>
<td>$\beta^* = 180^\circ - \beta$</td>
<td>$\frac{1}{c \sin \alpha \sin \beta^*}$</td>
</tr>
<tr>
<td></td>
<td>$c^* = \frac{1}{c \sin \beta}$</td>
<td>$\gamma^* = \gamma = 90^\circ$</td>
<td>$\frac{1}{c \sin \alpha \sin \beta}$</td>
</tr>
</tbody>
</table>
Bragg’s law in reciprocal space

- \(k = \frac{2\pi}{\lambda} \)
- \(k = |\mathbf{k}_i| = |\mathbf{k}_f| \)
- \(Q = \frac{2\pi}{d} \)
- \(Q = 2k \sin \theta \)
Ewald Sphere
Geometrical interpretation of diffraction

- For Bragg diffraction $k_i = k_f$, and the Δ is an isosceles.

- Can construct a sphere (circle in projection) with $r = k = |k_i| = |k_f|$, touching the origin.

- Scattering condition: Constructive interference occurs when a reciprocal lattice point lays on the surface on the Ewald sphere.
The **number of scattered neutrons** as a function of \(Q \) is measured. The result is the scattering function \(S(Q) \) depending only on the properties of the sample.
A single crystal sample gives specific diffracted beams in (θ,ϕ) as intersections (solutions) on the Ewald sphere.

A powder sample has grains in all orientations resulting in conic solutions to scattering for each hkl.

Single Crystal vs. Powder Diffraction
Bragg law gives geometrical condition for diffraction to occur, but no quantitative information on the intensity of the diffracted beam.
Structure factors and Intensity

Structure factors

- complex numbers that express both the amplitude and the phase of scattering
- information about how the scattering centers are distributed within the lattice

\[
F_{hkl} = \sum_{j=1}^{N} f_j e^{i\varphi_j}
\]

\[
F_{hkl} = \sum_{j=1}^{N} f_j e^{2\pi i(hx+ky+lz)}
\]

\(f_j\) (form factor) gives information about individual atoms

We measure **intensities**: \(I_{hkl} \propto |F_{hkl}|^2\)
Structure Factor – Systematic absences

\[F_{hkl} = \sum_{j=1}^{N} f_j e^{i\varphi_j} \]

Systematic absences: complete cancelations due to symmetry

\[F(110) = f_{\text{grey}} - f_{\text{cyan}} \]

\[F(220): f_{\text{grey}} + f_{\text{cyan}} \]
Monoatomic bcc system

\[
F_{hkl} = be^{2\pi i(h0+k0+z0)} + be^{2\pi i(h/2+k/2+z/2)} = b + be^{\pi i(h+k+l)}
\]

- \(F_{hkl} = 0\) \(h + k + l = 2n + 1\)
- \(F_{hkl} = 2b\) \(h + k + l = 2n\)

Ex.: Fe, V, Cr, Mo,

Fe

- \(Im \bar{3}m\)
- \(a= 2.8665\text{Å}\)
- Atom position: \(2a (0,0,0)\)

Systematic absences: complete cancelations due to symmetry
Form factor, \(f(Q) \), is the Fourier Transform of the scattering density \(\rho(r) \) of an atom:

\[
f(Q) = \int_0^\infty \rho(r) \exp\{iQ \cdot r\} dr
\]

Neutrons are scattered by nucleus and the form factor is not angular dependent. The scattering density is in the form of a \(\delta \)-function.

Intensities drop off at high angles in an X-ray diffraction pattern because the form factor decreases. The scattering density is the electron cloud distribution.
Neutrons vs. X-ray:

- light elements scatter as strongly as the heavy elements
- contrast between neighboring atoms
Why different diffraction peak intensities?

\[I_{hkl} = |F_{hkl}|^2 \times t(\theta)^2 \times M_{hkl} \times LP(\theta) \]

- Debye Waller factor
- Multiplicity factor (equivalent d-spacings)
- Lorentz & Polarization factor

Multiplicity factor – cubic system

- \{100\} family: (100), (010), (001), (-100), (0-10), (00-1) \[M=6 \]
- \{110\} family: (110), (-110), (1-10), (-1-10), (101), (-101)
 (10-1), (-10-1), (011), (0-11), (01-1), (0-1-1) \[M=12 \]
- in general: \(M(n_100)=6 \), \(M(n_1n_10)=12 \), \(M(n_1n_1n_2)=24 \), \(M(n_1n_1n_1)=8 \)
 \(M(n_1n_20)=24 \), \(M(n_1n_2n_3)=48 \)

Multiplicities are lower in lower symmetry systems.
Debye-Waller Factor
(Temperature Factor, Atomic Displacement Parameter)

- measure of atoms vibrations or displacement (static disorder) from the crystallographic site
- the more an atom vibrates, the more the diffracted intensity is decreased because the scattering power of the atom is smeared out

\[t_j = \exp\left(-B_j \frac{\sin^2 \theta}{\lambda^2} \right) \]

Isotropic displacement parameter (Å²)

Note: The displacement parameter is not necessary isotropic. In the single crystal diffraction it is treated as anisotropic.

http://dx.doi.org/10.1016/j.progsolidstchem.2007.03.004
scattering density

\[\rho_{\text{xyz}} = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} F_{hkl} \exp[-2\pi i (hx + ky + lz)] \]

structure factor

\[F_{hkl} = \int_{\text{cell}} \rho_{\text{xyz}} \exp[2\pi i (xh + yk + zl)] \]
Information in the Diffraction Pattern

- **Peak Positions**
 - information about the translational symmetry, namely the size and shape of the unit cell

- **Peak Intensities**
 - tell you about the distribution of the scattering density inside the unit cell, namely where the atoms are located and sites occupancies

- **Peak Shapes and Widths**
 - information about deviations from a perfect crystal, i.e. small crystallite size, defects, microstrain

- **Background**
 - incoherent scattering; broad features signal the presence of amorphous components in the sample
Rietveld – a structural refinement method

Whole pattern refinement method, overcoming the problem of moderate overlapping of peaks

- **requires** a fairy good knowledge of the crystal structure (lattice parameters, space group, atom positions...) – a model
- **requires** good quality data up to large enough d-spacings
- **provides** a validation of the model
- **provides** accurate information about the atom positions, occupancies and thermal parameters (i.e. distances and angles between the atoms, bond lengths...) and quantitative phase analysis
Rietveld – a structural refinement method

\[y_{i}^{\text{calc}} = s \sum_{hkl} LP_{hkl} |F_{hkl}|^2 \Gamma_{hkl}(2\theta_i) A_{i} + \text{bkgrd}_i \]

- compare the calculated and measured pattern
- minimize the difference between experimental and calculated diffraction pattern in a least squares refinement by varying a number of parameters; minimize:

\[S_y = \sum_{j} w_j (y_j - y_{ij})^2 \]

\[w_j = \frac{1}{y_j} \quad y_j = \text{observed intensity} \quad y_{ij} = \text{calculated intensity} \]
Evaluation of fitting quality (R-factors):

- **R-pattern, R_p:**
 \[R_p = \frac{\sum |y_i - y_{ci}|}{\sum y_i} \]

- **R-weighted pattern, R_{wp}:**
 \[R_{wp} = \left(\frac{\sum w_i (y_i - y_{ci})^2}{\sum w_i (y_i)^2} \right)^{1/2} \]

- **R-Bragg factor, R_B:**
 \[R_B = \frac{\sum |I_{(hkl)}('obs') - I_{(hkl)}(calc)|}{\sum I_i('obs')} \]

- **R-expected, R_e:**
 \[R_e = \left(\frac{(N - P)}{\sum w_i y_i^2} \right)^{1/2} \]

Goodness of fit, S:
\[S = \frac{R_{wp}}{R_e} \]

Visual inspection of the difference curve during the iteration process is critical in evaluating the model, the R-factors do not point to the origins of a possible problem!