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What determines count rate?

• Sample independent factors

– Neutron flux (neutrons per cm2 per second)

– Geometry/setup of the spectrometer (more 

neutrons if resolution is “coarse”)neutrons if resolution is “coarse”)

– Efficiency of detector

• Sample dependent factors

– If weak scattering: the amount of sample

– Orientation of sample, scattering angle

– Differential cross-section



Count Rate and Cross-Section

Φ, flux

r
Adet

• Would count N particles in ∆t seconds e=100%

• N is proportional to Φ, Adet, r
-2

N

∆t
= D(samp, geo) Φ

Adet

r
2

= DΦ∆Ω

D(samp, geo) is the differential cross-section



Distribution Function-Histogram

• 4% of students with a grade of 80

• Obviously more than 4% with 80 or 81

• There is an implicit “per mark” in the 

denominator.



Diff. Cross-Section: a Ratio as an 

Area

• dΩ, solid angle in steradians (4π sr in a 

sphere, the sun 100 µsr, a spectrometer 100-

1000 µsr)

• Differential cross-section is the ratio of count • Differential cross-section is the ratio of count 

rate to flux per unit solid angle

D(samp,geo) =

dN dt

Φ











dΩ
=

"dσ "

dΩ
=

dσ

dΩ



Simple Estimate of Differential 

Cross Section (an area)

• Incident flux is Φ=1.0 x 107 neutrons cm-2 s-1

• Adet=10 cm2, r=100 cm (0.001 sr), N=3000, 

∆t=30 s

Nr
2 (3000)(100)2

• If there are 1022 atoms, D=10-24 cm2=1 barn 

(per sr) per atom.

D(samp,geo) =
Nr

2

AdetΦ∆t
=

(3000)(100)2

(10)(107)(30)
= 0.01 cm2 (sr−1)



Predicting the Differential Cross-

Section (Classical, Azimuthal Sym)

•Have used classical mechanics to determine the relationship 

between b (impact parameter) and θ
•Assume azimuthal symmetry

•But you can’t set b; you have uniform flux of particles Φ and a 

detector at some angle



Classical Diff. Cross-Section

• Solid angle subtended by detector

• “Area” to scatter to detector at θ

dσ = b dφ db = b(θ)
db

θ
dφ dθ

• Count rate

dσ = b dφ db = b(θ)
dθ

dφ dθ

N

∆t
= Φdσ = Φ b(θ )

db

dθ
dφ dθ = Φ

b(θ )

sinθ

db

dθ
dΩ = Φ D(θ )dΩ

D(θ ) =
"dσ "

"dΩ"
≡

dσ

dΩ
=

b(θ )

sinθ

db

dθ



Rutherford (Coulomb) Scattering

b =
Ze2

4πε0EK
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





cot

θ

2










dσ

dΩ
=

b

sinθ

db

dθ
=

Ze
2

8πε0EK











2

1

sin
θ

2











4

Z=79, EK=5.3 MeV, θ=25oZ=79, EK=5.3 MeV, θ=25

dσ

dΩ
=1.15barns



What determines Φ at the sample?

• Quoting “flux of the reactor” includes all 

energies and all directions.

• “Front-end” gives a ∆λ/λ (or ∆k/k) out of 

Maxwell distributionMaxwell distribution

φ(ki )dki =
dki

ki

Ei

kBT











2

exp −
Ei

kBT









 ΦT = 3%( )

36

28.5











2

exp −
36

28.5























5×1014 cm−2s−1( )

= 6.8×1012 cm−2s−1

kBT = kB (330 K) = 28.5 meV E i = 36 meV (λ =1.5 A
o

)

• Lower case φ is a flux “per unit k”



Φ Estimate: Discriminate direction

• A solid angle of acceptance (approx)
Horizontal 0.5° and vertical 2°

Φsamp =
φ(ki )dki dΩ

4π
=1.6 ×108 cm−2s−1

• (High?  Monochromator?  Resolution?)

• Nuclear reactors aren’t lasers! Or 

synchrotrons!  Closer to a high vacuum!



Modifications to Cross-Section for 

Quantum Neutron Scat.

• The incoming and scattered particles are 

replaced by an incoming plane wave and an 

outgoing wave (Born approx, weak scattering)

• The quantum state of the system (sample plus 

beam) changes as a result of the interaction 

between the incoming wave and the sample

• In every case the interaction potential V is 

included in some fashion and you want to find 

the likelihood of a transition.



Interpretations and Methods of 

Quantum Scattering

ψ(r,θ ) ≈ A e
ikz + f (θ )

e
ikr

r









, for large r

• Incoming plane wave and outgoing wave k=2π/λ
• f(θ) is the scattering amplitude and is a complex number • f(θ) is the scattering amplitude and is a complex number 

with dimensions of length

• f(θ) depends on the sample, geometry, and k.  Usually not 

stated as simple function. 

• Will use Fermi’s Golden Rule to calculate a transition rate

dσ

dΩ
= f (θ )

2



Time-dependent Perturbation Theory
(some of the quantum details)

• The sample and neutron wave have a Hamiltonian H (can be 

used to find total energy and also “evolves” the quantum 

system)

• How likely is a transition between an incoming neutron wave 

and initial sample state to a final sample state with a scattered and initial sample state to a final sample state with a scattered 

neutron wave of a possibly different energy? 

• Transition probability per unit time 

  

Ψ(t) = c i(t)ψi exp −
iE it

h

 

 
 

 

 
 + c f (t)ψ f exp −

iE f t

h

 

 
 

 

 
 

∝ c f t( )
2

/ t

(Note: the sample is not in a specific state but instead is in some kind of spread of states

because of finite temperature.  Let’s investigate a single state and do the averaging over 

the “ensemble” of states later.)



Details: T-dep. Perturbation Theory

• Time-dep Schrödinger equation

• Evolution of “final state” for weak perturbation

H +V (t)( )Ψ(t) = ih
∂ Ψ

∂ t

• Evolution of “final state” for weak perturbation

• If V(t) is sinusoidal (i.e. a wave) 

c f (t) ≈
1

ih
ψ f V ( ′t ) ψi0

t

∫ exp
i

h
(E f − Ei ) ′t









d ′t

V (t) = V exp
−iEt

h









+V + exp

iEt

h













Transition Probability at large t

• Use energy absorption as an illustration

Pf (t) = c f (t)
2

=
1

h
2

ψ f V ψi

2

sin
1

2

E − (E f − Ei )( ) t

h













1

2

E − (E f − Ei )( )
h





















2

• The 2nd term -> a delta-function x 2πħ t for

long times.  Sensitive to final density of states

• For a transition rate, the t term cancels out. 

2 h







Fermi (Dirac)’s Golden Rule

• Fermi’s Golden Rule (for scattering into dΩ)

Wr
ki ,λi→

r
k f ,λ fr

k in dΩ

∑ =
2π

h
ρ r

k f

(E f )
r
k f λ f V

r
kiλi

2

• Transition rate from Squires’ Eqn. 2.2

• ρkf is the # of final states per unit energy

• λ are the labels describing the sample state

• Can also include spin degrees of freedom for 

the neutron σ

k f in dΩ h



Cross-section from Transition Rate

dσ

dΩ









 =

Wr
ki ,λi→

r
k f ,λ fr

k f in dΩ

∑

Φ

















dΩ
=

1

Φ

1

dΩ
Wr

ki ,λi→
r
k f ,λ fr

∑
dΩ





λi→λ f

=
dΩ

=
Φ dΩ

W
ki ,λi→k f ,λ fr

k f in dΩ

∑

• Squires’ Eqn. 2.1

• Will we get the correct cancellation?

• Yes, use a “box” for normalisation.



Density of States

• Generalised definition “# of states”= “density 

of states” x “volume”

• Counting/standing wave argument then use 

the chain rule to get the correct units for 

“volume” (an energy volume in this case)“volume” (an energy volume in this case)

• Neutron waves scattered into a d3k and a dEf : 

how many states are available (box with ‘L’)?



Cross-section Result

# = ρ
′
r
k
(E f )

d
3
k f

dE f

dE f =
L

2π











3
k f

2
dk f dΩ

h
2k f

m
dk f

dE f =
L

2π











3
mk f

h
2

dΩdE f

ρ (E )=
L





3
mk f

dΩ

• Incident flux involves L3 as well

Φ =
υi

L
3

=
hki

mL
3

ρ
′
r
k
(E f )=

L

2π











mk f

h
2

dΩ



Differential Cross-Section

f V i
2

= dx dy dz ψ r
k f

∗ (
r
r )V (

r
r;

r
Rj ) ψ r

ki

(
r
r )

L
3 box

∫∫∫
2

=
1

L
6

dre
−i

r
k f ⋅

r
r
V (

r
r;

r
Rj ) ei

r
ki⋅
r
r∫

2

The L6 term is removed by considering the normalisation factors of 

the neutron wavefunction.

(Have assumed that the state of the sample is unchanged.  Need to 

dσ

dΩ
=

m

2π h
2











2
r
k f V (

r
Rj )

r
ki

2

(Have assumed that the state of the sample is unchanged.  Need to 

relax this for inelastic scattering/partial differential cross-section.  

Also contains the Born approximation for weak scattering.)

Combine previous terms to obtain differential cross-section. Now 

just exponentials in matrix element.



How can we sum over 1022 atoms?

• Maybe each one sends a wave that is 

independent of the others and incoherent 

(random phase over atoms would do it)

2

f Vj (
r
r −

r
R j )

j

∑ i

2

= f Vj (
r
r −

r
Rj ) i

2

j

∑

• Or else we need to keep the “cross terms” 

interference



Fourier Transform of V

• Take advantage of the periodicity of the 

lattice?

V (
r
r ) = Vj (

r
r −

r
Rj )

j

∑
r
x j =

r
r −

r
Rj

j

r
k f V

r
ki = d

r
r∫

j

∑ exp i
r
ki −

r
k f( )•

r
r( )V (

r
r −

r
Rj )

r
k f V

r
ki = d

r
x j∫

j

∑ exp i
r
Q•

r
x j +

r
Rj( )( )V (

r
x j )

r
k f V

r
ki = exp(i

r
Q•

r
Rj ) d

r
x j∫

j

∑ exp i
r

Q•
r
x j( )V (

r
x j )



Interaction?

• Nucleus-neutron… inverse square?  (joke!)  

Actually don’t know but take advantage of it 

being really short range.

• Electron-neutron… electron creates a • Electron-neutron… electron creates a 

magnetic field which interacts with the 

magnetic dipole moment of the neutron and 

there a lot of electrons in a lot of places with 

lots of different magnetic fields…



Bound Scattering Length

• If we consider a fixed, single nucleus then the 

scattering of thermal neutrons (wavelength 

much greater than the interaction distance) 

the scattering will be pure S-wave (result of 

diffraction theory)diffraction theory)

ψsc (
r
r )∝−

bj

r
exp ik f r( )

• This matches earlier formalism 

with complex scattering length 

“b” playing the role of f(θ).

dσ

dΩ
= b

2



What potential would give b?

• Delta-function potential with parameter a

V (
r
r ) = aδ3(

r
r )

f V i
2

= d
r
r exp i

r
k −

r
k( )•

r
r( ) aδ3(

r
r )∫

2

= a
2

f V i = d r exp i ki − k f( )•r( ) aδ (r )
all space

∫ = a

a =
2πh2

m
b V (

r
r −

r
R j ) =

2πh2

m
bjδ

3(
r
r −

r
Rj )

• Fermi pseudo potential

• b is determined by experiment



A System of Many Nuclei

V (
r
r ) = Vj (

r
r −

r
Rj )

j

∑ =
2π h

2

m









 bj δ

3(
r
r −

r
Rj )

j

∑

• Now doing the Fourier Transform is easy

r
k f V

r
ki =

2πh2

m
bj exp(i

r
Q•

r
Rj )

j

∑

• Can write the mod-squared as double sum

r
k f V

r
ki

2

=
2πh2

m











2

b*

′j bj exp i
r
Q•

r
Rj −

r
R ′j( ){ }

′j j

∑



Better expression: possible states 

of sample/neutron

• You don’t know the exact spin states of all of 

the nuclei or the neutrons

dσ

Ω
= pλ pσ exp i

r
Q•

r
R j −

r
R ′j( ){ }∑∑ σλ b*

′j bj σλ
dΩ

= pλ pσ exp iQ• R j − R ′j( ){ }
′j j

∑
λ,σ

∑ σλ b ′j bj σλ

• Marshall and Lovesey (1.16a) 

b ′j
*

bj = pλ λ b ′j
*

bj λ
λ

∑ dσ

dΩ
= exp i

r
Q•

r
Rj −

r
R ′j( ){ } b*

′j bj

′j j

∑

• The dependence on neutron spin averages out 



Coherent and Incoherent Parts

• If different atoms there is no correlation 

between the ‘b’ values; otherwise perfect

b ′j
*

bj = b
2

+δ j, ′j b
2

− b
2

( )b ′j bj = b +δ j, ′j b − b( )
dσ

dΩ











coh

= b
2

exp i
r
Q•

r
R j{ }

j

∑
2

dσ

dΩ











incoh

= N b
2

− b
2

{ } = N b − b
2

Average of b

Strict geometry

Deviation from 

average of b



Calculating Coherent and 

Incoherent Scattering Lengths

• b+ and b- are the scattering lengths for total 

spin equal to I+1/2 and I-1/2 if I is the spin of 

the nucleus

• the multiplicity of the I+1/2 state is larger than • the multiplicity of the I+1/2 state is larger than 

the I-1/2 state

• Multiple isotopes

• x 4π for σcoh etc.

b = cξ

1

2Iξ +1
(Iξ +1)bξ

+ + Iξbξ
−{ }

ξ

∑

b
2

= cξ

1

2Iξ +1
(Iξ +1) bξ

+
2

+ Iξ bξ
−

2

{ }
ξ

∑



Practical Examples

• Hydrogen (proton) is a very strong incoherent 

scatterer (80 b incoh, 1.8 b coh); deuterium 

much less so (6.0 b, 2.1 b)

• Vanadium-51 has very little coherent • Vanadium-51 has very little coherent 

scattering (0.03 b) because of a match 

between b+ and b-

• Natural boron, cadmium, gadolinium are 

strong absorbers



Reciprocal Lattice

• Want for coherent scattering.

• This means that  will be a reciprocal lattice 

vector.

r
Q•

r
R j = 2πn

r
Q

r
a,
r
b,
r
c are lattice vectors

r
R = n

r
a + m

r
b + l

r
c for a Bravais lattice

r
a,
r
b,
r
c are lattice vectors

r
Rj = n

r
a + m

r
b + l

r
c for a Bravais lattice

r
A = 2π

r
b ×

r
c

r
a •

r
b ×

r
c( )

r
B = 2π

r
c ×

r
a

r
a •

r
b ×

r
c( )

r
C = 2π

r
a ×

r
b

r
a •

r
b ×

r
c( )

r
G(hkl) = h

r
A + k

r
B + l

r
C is the reciprocal lattice

r
Q =

r
G(hkl) is Bragg's Law



Non-Bravais: Structure Factor

• Still require Q=G but some reflections may be 

reduced or systematically absent

j atoms in unit cell at positions
r
d j = d j1

r
a + d j2

r
b + d j3

r
c

FN

r
G(hkl)( ) = bj exp i

r
G •

r
d( )

j

∑

dσ

dΩ











coh

= N
2π( )

3

v0

FN hkl( )
2

δ3
r
Q −

r
G(hkl)( )

r
G(hkl )

∑

• V0 is the volume of the unit cell

• Nuclear structure factor FN is very useful



Elastic Magnetic Scattering

• Use a similar analysis for magnetism with a 

different “vector style” interaction

dσ 
( )

2 1 r 2
QαQβ

 
∑ × exp i

r
Q•

r
R( ) Ŝα Ŝβ∑

αβ are Cartesian

components

dσ

dΩ











el

= γr0( )
2 1

2
gF(

r
Q)









 δαβ −

QαQβ

Q
2











α β

∑ × exp i
r
Q•

r
Rj( ) Ŝ0

α Ŝ j

β

j

∑

Fd (
r

Q) = ρunpaired e, d∫ (
r
r ) exp i

r
Q•

r
r( ) d

r
r

• Also need to include a magnetic form vector

• γ=1.913, r0=2.82 fm (classical r of electron)



Elastic Scattering: Going Forward

• Although underlying theory can be fairly 

complex.  Most of the time the 

experimentalist uses “rules of thumb”.

• Although it “looks” hard a lot of key • Although it “looks” hard a lot of key 

simplifications that make neutron scattering 

easier to interpret.

• Bragg peaks from coherent scattering

• Nuclear scattering is from “point” objects and 

neutron spin averages out.  Not so for 

magnetic scattering.


