
In-Situ Neutron Powder Diffraction Study on In-Doped BaCeO₃

M. Bieringer¹, J.A. Lussier¹, S.P. Shafi¹

BaCeO₃ is an electronic insulator and proton conductor making it a feasible a candidate for solid state proton electrolyte applications in fuel cells. Previous neutron scattering studies by Knight indicated a sequence of phase transitions from orthorhombic (*Pnma* → *Imma*) via rhombohedral (R-3c) to a cubic (Pm-3m) structure at high temperature.² The orthorhombic structures are shown in figure 1. We are interested in In³⁺ doped analogues of BaCeO3 which are intermediates for indium doped CeO₂ for oxidize ion conduction applications. Since powder X-ray diffraction experiments cannot identify the Pnma to Imma phase transition, this transition was investigated for BaCe_{0.9}In_{0.1}O₃, BaCe_{0.8}In_{0.2}O₃ using the neutron powder diffractometer C2 at the CNBC. Figure 2 shows the neutron powder diffractograms for BaCe_{0.9}In_{0.1}O₃ and BaCe_{0.8}In_{0.2}O₃ between 25°C and 450°C and clearly show the disappearance of the (122) and (102) reflections consistent with the phase transition from Pnma to Imma below 200°C. This finding is in agreement with the previous studies by Knight² on the undoped BaCeO₃ structure. Indium doping does not have a profound impact on the room temperature structure and the Pnma to Imma phase transition.3

This work has been published in *Inorganic Chemistry* [Lussier, J.A., Shafi, S.P., Donaberger, R.L.; Bieringer, M., *Inorganic Chemistry*, 2014, **53**, 8809–8815]

Figure 1: BaCeO₃ orthorhombic structures. Blue = Ba^{2^+} , yellow = Ce^{4_+} , red = O^{2^-} . Left structure: BaCeO₃ in space group *Pnma*. Right structure: BaCeO₃ in space group *Imma*.

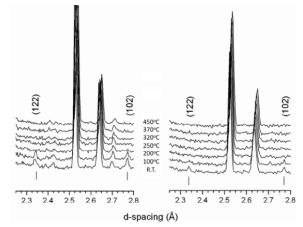


Figure 1: Variable temperature powder neutron diffractograms collected on C2 at CNBC. The peaks are labeled with respect to space group *Pnma*. Left: BaCe_{0.9}In_{0.1}O₃ Right: BaCe_{0.8}In_{0.2}O₃

References

- [1] de Souza, E. C. C.; Muccillo, R. Mater. Res. 2010, 13, 385–394.
- [2] Knight, K. S. Solid State Ionics 2001, 145, 275-294.
- [3] Lussier, J.A., Shafi, S.P., Donaberger, R.L.; Bieringer, M., Inorganic Chemistry, 2014, 53, 8809–8815

¹ Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2