Cation-induced changes to the structure of lipid membranes
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Cell membrane properties such as, membrane fluidity, bending and rigidity moduli,
electrostatics, and aggregation and fusion are tightly associated with ions that are prevalent in
both the cytosol and the exterior of the membrane. The cation binding (Ca**, Mg*", etc) depends
not only on the property of the cation and the membrane lipid head-group, but also on the lipid
tail chain. In spite of many studies of cations adsorption on phosphatidylcholine membranes, the
information concerning their influence on the lipid bilayer itself is rather scattered and often
contradictive. Former hydration X-ray diffraction experiments reported no effect of Ca®* on the
dipalmitoylphosphatidylcholine (DPPC) bilayer thickness in a lamellar phase [1], while NMR
experiments documented an increase in order parameters in the polar head group segments as well as
hydrocarbon chains [2], and changes in the surface area per phospholipid molecule [3]. The
molecular dynamics simulation results revealed condensation of an anionic lipid bilayer and a
concomitant increase in lipid order parameters [4]. Interestingly, in contrast to K" and Na", Ca*, was
found to play a dominant role in affecting bilayer structure. Recent small-angle neutron-scattering
(SANS) measurements using DPPC vesicles and Ca?" have revealed that cations at low concentration
increase the order of lipid bilayers by increasing bilayer thickness (Fig. 1A) and decreasing area per
lipid [5,6].
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Attained results (summarized in Fig. 1B,C) show clearly that Ca** effects DPPC bilayer
thickness (d, ). Due to Ca** binding, we found its increase up to AdL=dL—dL(DPPC)=4.2 A, where
d; pppey 18 the lipid bilayer thickness without any Ca’. A concomitant decrease in surface area A
per DPPC molecule was also determined. Our observations agree well with previous SANS
results [5,6] confirming the Ca?* induced structural changes to bilayer based on a prevailing effect

of electrostatic interactions, rather than that of bilayer curvature.
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