Electric field induced magnetic switching in multiferroic BiFeO₃ and ferromagnetic La_{0.67}Sr_{0.33}MnO₃ thin film tunnel junction bilayers

Joel Bertinshaw^{1,2}, Nagarajan Valanoor³, David Cortie^{1,4}, Frank Klose¹, Clemens Ulrich^{1,2}

Multiferroic materials are a rare case where ferromagnetism (FM) and ferroelectricity (FE) coexist, presenting exciting opportunities for scientific research and technological innovation. Bismuth Ferrite (BiFeO₃) is of special interest, as both properties order at room temperature and exhibit magnetoelectric coupling [1]. The opportunity for novel storage devices in particular is impressive; control of the spin state via an applied electric field opens the possibility for spintronic and other next generation information storage devices [1]. Therefore, its use in functional thin film heterostructures, like multiferroic tunnel junctions or exchange bias systems that combine multiferroic (MF) and ferromagnetic layers, such as La_{0.67}Sr_{0.33}MnO₃ (LaSrMnO₃), is of particular interest [2].

Polarised neutron reflectometry was performed on LaSrMnO $_3$ / BiFeO $_3$ bilayer thin films to investigate the magnetic profile and coupling between the multiferroic (antiferromagnetic and ferroelectric) BiFeO $_3$ layer and the ferromagnetic LaSrMnO $_3$ layer. The thin film surface area was approximately 8mm x 8mm. We measured the spin-up and spin-down polarised neutron channels to observe splitting of the reflectivity curves, which occurs as a result of the magnetic polarisation of the system. These measurements were performed at temperatures

from 5 K to 300 K and under applied magnetic vertical fields of 3 kG and 80 Gauss. The incident wavelength was 2.37 Å. We achieved good statistics with scans of $^{\sim}12$ h, including both channels, within a Q_z range up to 0.08 Å $^{-1}$ (see Figure 1).

Analysis of the results show evidence of complex interplay physic at the interface between the ferromagnetic LaSrMnO₃ and multiferroic BiFeO₃ layers. Certain features of the PNR signal could only be modelled with the addition of an additional thin interface layer. Intriguingly, the best fit was achieved with the inclusion of a thin ferromagnetic BiFeO₃ layer (~4 nm) (Figure 1). This would indicate a frustrated spin state is extending into the antiferromagnetic BiFeO₃ layer as a result of correlation at the interface with the ferromagnetic LaSrMnO₃. While further careful analysis and complementary experimental techniques will be required to ensure this model is physical, the result is in agreement with recent theoretical predictions [3].

References

- [1] Gajek et al., Nat. Mater. 6, 296 (2007)
- [2] Hambe et al., Adv. Func. Mat. 20, 2436 (2010)
- [3] Calderon et al., Phys. Rev. B (2011) vol. 84, p. 024422
- [4] http://wwwllb.cea.fr/prism/programs/simulreflec/simulreflec.html

¹ Bragg Institute, Australian Nuclear Science & Technology Organisation, Lucas Heights, Australia

² School of Physics, University of New South Wales, Kensington, Australia

³ School of Materials Science & Engineering, University of New South Wales, Kensington, Australia

⁴ School of Physics, University of Wollongong, Wollongong, Australia

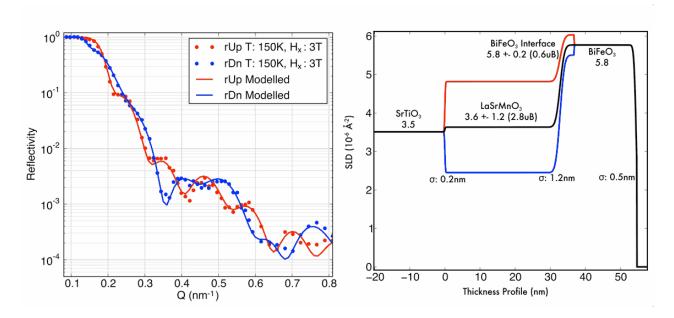


Fig. 1 (a) Polarised neutron reflectivity data at 150K and under an applied field of 3T. Includes a fitted model of the data, with $\chi^2 = 0.8$, using the SimulReflec software package[4]. (b) Scattering Length Density profile of the fitted model, indicating the 4 nm ferromagnetic BiFeO₃ interface layer.