CBC Radio Windsor Morning interviews Drew Marquardt

Drew Marquardt (DM) was interviewed by Tony Doucette (TD) on CBC radio’s Windsor Morning, April 6, 2018. 

Listen to Audio: http://www.cbc.ca/listen/shows/windsor-morning/segment/15535755

Editor’s note: CINS is not opposing the closure NRU reactor per se; rather, CINS is asking for a clear signal from government that it will provide what Canadian researchers need to make use of alternative facilities.


TD: A University of Windsor professor and researcher is adding his voice to the growing chorus of those opposed to the Chalk River nuclear reactor. That facility, which dates back to 1957 is famous for producing much of the world’s medical isotopes. And for the work of Nobel Prize-winning physicist Bertram Brockhouse. But lessor known, to the general public, is the important role the facility has played in research using neutron beams. And that’s where Windsor professor Drew Marquardt comes into the story. He’s made regular trips to Chalk River along with his students and part of his research. But with the reactor closing the 31st of March, he says future research by him and many others across the country is being threatened. Professor Drew Marquardt joins me in the studio. Good morning.

DM: Good morning.

TD: Let’s start with a rudimentary explanation of what a neutron beam is, and what a neutron beam can do.

DM: OK. Let’s start with where the neutrons come from. The neutrons are generated in the core of the reactor in Chalk River. And [through] little holes in the reactor, we are able to steal a few neutrons in order to bombard samples. And so, we siphon off these neutrons and we probe biological materials, [or] metals, for example, rail road track…

TD: Somewhat comparable to what we do with x-rays, right? A little more intense, or a little more… Well, I’ll let you explain.

DM: Exactly. So x-rays look at the electron cloud. Neutrons look at the nuclei. So they’re looking at different parts of the atom, which allow them to see different properties. I like to think of it as a kind of atomic microscope. So a traditional microscope you’re looking at cells or different cells interacting with each other… Large-scale in terms of the atom world. With neutrons, we’re actually looking at the interactions and the structures of the atoms in the material, so it’s like an atomic microscope.

TD: And Chalk River, I understand, is the only nuclear facility in the country that makes these available?

DM: Yes, McMaster University is building a single beamline to try to help alleviate the loss, but Chalk River was our major facility, yes.

TD: What kind of research were you doing there?

DM: During my graduate studies, I was examining the interaction of Vitamin E with cell membranes. Believe it or not, vitamin E is an essential nutrient, but we don’t know why it is essential. My research was looking at how vitamin E was interacting with these membranes in an effort to test whether it truly is an antioxidant in the body. And the outcomes of the research: we were able to put a mechanism together that does support that it’s an antioxidant, a preserver of our cell membranes. My research now has moved towards testing the theories: does vitamin E prevent or treat cancer? These are some theories that are out there, but a molecular mechanism and understanding is lacking yet.

TD: And do you need these neutron beams in order to continue with this research?

DM: Absolutely. So the sizes of the phenomenon that I’m examining are far below any kind of optical limit. I’m interested in the atom-atom interactions in the molecule and molecule-molecule interactions.

TD: So what will you do now?

DM: So there are sources abroad that we are able to visit, but there are hurdles again, travelling to a foreign nuclear facility.

TD: Well, let’s be clear. You physically had to travel to Chalk River in order to do this research.

DM: Oh absolutely. And that’s actually what made Chalk River such a great experience for myself as a student and for my students now. They got to go to this world-class facility and see these massive scientific instruments at work, and use them themselves

TD: It sounds to me like unless you can come up with a fair bit of money, this may have the potential to close down your research. Could it be that extreme?

DM. It could be that extreme. With the exchange of going to the States, it’s a lot of stress on a research budget. European facilities – aside from the cost of flying across the Atlantic – they give preference to member countries, and so Canada is not a paying member into any European facilities, which is a hurdle for Canadian researchers to go.

TD: What about the United States?

DM: The United States, we actually had an agreement with the Oak Ridge National Labs, where there would be a certain amount of beam time allocated Canadian researchers, but this agreement unfortunately has come to an end this year as well. And so, what the Canadian Neutron Initiative is looking to do is, bridge this gap, to help set up these relationships at other sources to help materials scientists like myself do their research.

TD: There are other nuclear facilities in this country. Might the solution lie in one or more of those?

DM: Unfortunately not. The power reactors operate at too high a temperature to be useful for studying materials. McMaster does have a small reactor on their campus to train their nuclear engineers, but it lacks the infrastructure to probe materials at any grand scale.

TD: Now beyond your own work and that of your students at the University of Windsor, what does the closure of that facility in Chalk River mean for the big picture, for this country’s role in scientific research?

DM: Canada’s been a leader in the filed for the last 70 years. You mentioned Brockhouse’s Nobel Prize. We’re on the verge of letting that leadership and legacy slip away, which is actually quite sad, because we have been at the forefront of materials science and neutron scattering.

TD: So what would you like to see? What would you like the government to do?

DM: The Canadian Neutron Initiative, the CNI – they have put together a cost-effective solution to help scientists like myself go to other facilities to continue their research. The details of this proposal can be found at cins.ca/cni. It lays out the framework of keeping a critical mass of expertise in Canada, and helping researchers like myself afford to travel abroad.

TD: How long have you been doing this research?

DM: Ten years.

TD: And now it is in jeopardy, in question? How would you characterize the situation you are in as we speak?

DM: It is definitely in question, and if we don’t soon get a clear signal, it could be definitely in jeopardy.

TD: Which would not be good news story for you and certainly not for your students either.

DM: No.

TD: I wish you well. I hope you find a solution.

DM: Well thank you very much.

TD: That’s Professor Drew Marquardt, a biochemist at the University of Windsor. His research includes the study of vitamin E and its effect on our own cells. And his work is threatened by the closure of the Chalk River nuclear reactor.

CBC: Canada is experiencing a neutron shortage — here’s why that matters

Highlights from “Canada is experiencing a neutron shortage — here’s why that matters”, CBC News,

Image: University of Windsor assistant professor Drew Marquardt (Dale Molnar/CBC)

Neutrons — subatomic particles with no electric charge — allow researchers to examine materials at the atomic level.

“You can take a biological sample and measure it with neutrons and not have destroyed your bacteria or our model membrane where as if you were to use x-rays, so light, those high intensities will destroy your sample,” said [biochemistry professor Drew Marquardt at the University of Windsor].

“If we want the next generation of cellphones or the next generation of drug delivery, we need the proper tools in order to investigate their structures and understand how they work,” he explained.

Marquardt added the NRU was staffed by experienced researchers who could help people with less experience conduct their experiments. He fears those talented researchers could now leave Canada.

“The people who are going to suffer are the scientists who aren’t experts in the field but really need the tools,” he said. “Without a plan in place to keep these expertise it will really put a strain on researchers that don’t rely on neutrons on a daily basis.”

“I’m really hoping that some of the aspects of the CNI will be adopted and prevent Canada from losing a legacy of being a leader in the field for the last 70 years,” he said.

Full Article: http://www.cbc.ca/news/canada/windsor/university-windsor-neutron-research-1.4607558

Neutron quest: Canadian Chemical News

Highlights from “Neutron Quest” in the March 2018 edition of Canadian Chemical News:

Canada is quietly marking a scientific and technological milestone this spring with the final shutdown of the National Research Universal (NRU), a nuclear research reactor located on Ottawa River near the small town of Chalk River, about three hours’ drive west of the national capital. With that, the country is severing one of the world’s most durable links to the 20 century’s enthusiasm for nuclear energy, as well as a scientific tool that will be challenging to replace.

Among the most prominent innovations [at NRU] was the technique of neutron scattering, a powerful new addition to our scientific tool kit, employing beams of these uncharged particles from the core of the reactor to probe the molecular structures and dynamics of any kind of material.

The NRU reactor quickly became the centrepiece of a community that includes some 800 people in dozens of Canadian universities and government departments as well as foreign institutions in 22 other countries. At the heart of this community is the Canadian Neutron Beam Centre (CNBC), the venerable “hub” of local scientific and technical expertise that developed the neutron beam lines — the intricate laboratory equipment that surrounds the reactor — and facilitates the research conducted there.

“Neutrons are a scarce resource and I’d like us to exploit them,” says Bruce Gaulin, who heads up the Brockhouse Institute for Materials Research at McMaster University. “The irony is that Canada was a heroic player in founding the field and now we’re going to be in this situation where we could be on the sidelines completely. We’re definitely not going to be in a leadership position, but it could be worse than that. It could be that we don’t have anywhere to go.”

[In 2015]  a coalition of interested parties formed the Canadian Neutron Initiative (CNI), to establish a new, university-led framework for stewardship of Canada’s capacity for materials research with neutron beams, building on existing national and international resources. With executive leadership from the University of Saskatchewan, McMaster University, CINS, and the Canadian Nuclear Association, the CNI’s efforts accelerated in 2017 to include several forays to Ottawa for meetings with different branches of government, culminating with testimony before the finance committee’s pre-budget consultation.

The CNI has suggested a federal funding package of $24 million over the next three years and $19 million annually from 2021 to 2029. In contrast, it has been costing around $100 a year to keep the NRU reactor running, a sizeable amount that was part of the rationale for retiring the reactor. For Gaulin, those numbers make CNI look like a bargain. 

“This is on the order of $20M a year, so it’s a fifth of what they’re already paying,” he insists. “It’s not a crazy proposal; it’s not a luxury. We need this.”

[Thad Harroun, President of the Canadian Institute for Neutron Scattering] remains optimistic.

“The door’s not closed,” he says. “We just need to continue the work and continue the dialogue. The CNI is a great solution; I hope that will be acknowledged soon.”

Get the full article (copyright Canadian Chemical News, reproduced with permission)

R$: Scientists disappointed with federal budget’s silence on neutrons

Highlights from “Scientists disappointed with federal Budget’s silence on nuclear research funding request” in the March 28, 2018 edition of Research Money:

Researchers dependent upon the aging nuclear reactor operated by Canadian Nuclear Laboratories (CNL) are disappointed that there was no response in the latest federal Budget to their request for modest funding to facilitate access to different sources of neutron beams.

Members of the Canadian Neutron Initiative (CNI) have been advocating for increased access to foreign facilities and upgrades to a small reactor at McMaster Univ. They were hoping the science-heavy Budget would support their research while a more permanent solution to the closure of the National Research Universal (NRU) reactor is explored. Operated by CNL, the 60-year-old reactor is being decommissioned at the end of March.

In response to Budget 2018, CNI members tell RE$EARCH MONEY they have entered into discussions with federal departments and agencies that received new funding in the Budget to see if there’s any money that can be allocated to help realize CNI’s funding objectives.

“In the budget, there’s a big emphasis on boosting science funding, but there are may ways to target that money; infrastructure, individual grants and fellowships, new chairs, industrial partnerships, and the like … Of course, we were happy to see the boost to the tri-councils. But on the infrastructure side, we also really need a new coordinated program to connect Canadians with alternative neutron beam labs, here and abroad. We’ve really been cut off from this important tool,” says Dr Thad Harroun, president of the Canadian Institute for Neutron Scattering, member of the CNI working group and associate professor at Brock Univ.

[John Root, Director of the Canadian Neutron Beam Centre] adds: “The plan right now is that we will wrap up the Canadian Neutron Beam Centre in the coming year. That is a team of about 20 professional and technical people that enable hundreds of users to access the facility effectively … We also have to decide what to do with our equipment. We have six neutron spectrometers and a number of (other) equipment that have a total replacement value of $30 million and those are assets that belong to the crown … so we have to decide whether and how to redeploy those — whether that could be a resource for building a partnership with an alternate neutron source, or maybe that we end up just folding it all. That has yet to be thought out and that’s one of the jobs for this year.”

Get the full article (copyright Research Money, pdf file used with permission)

Lowering the cost of energy-saving technology for cars and airplanes

Dalhousie University engineers use neutron beams to develop inexpensive ways to process lightweight materials for actuators that fold airplane wings during flight—just one of many possible energy-saving aerospace and automotive applications for shape memory alloys.
Continue reading Lowering the cost of energy-saving technology for cars and airplanes

Developing transferrable skills through the exploration of quantum magnetic materials

Access to neutron beams enables graduate students to conduct experiments in quantum magnetism—and thereby to develop advanced experimental and computational skills that can be readily applied to future careers in science and industry.

Continue reading Developing transferrable skills through the exploration of quantum magnetic materials

Office of the Minister of Science meets with researchers who use neutron beams

The Office of the Minister of Science received a delegation of Canadian researchers in support of the Canadian Neutron Initiative on Thursday last week (Feb 08, 2018). Delegates emphasized how irreplaceable neutron beams are to their fields of research.
Continue reading Office of the Minister of Science meets with researchers who use neutron beams

Transferrable skills: Materials research fosters analytical skills that reach well beyond the laboratory

By studying soft and biological materials with sophisticated tools like neutron beams, graduate students in biophysics are able to develop advanced analytical skills that can be transferred to a wide range of professional careers in all areas of Canada’s economy.

Continue reading Transferrable skills: Materials research fosters analytical skills that reach well beyond the laboratory